AI

cross_val_score with Keras

범고래_1 2021. 8. 21. 21:46

Make model

def build_model():
  X = tf.keras.layers.Input(shape=[28, 28, 1])
  H = tf.keras.layers.Conv2D(64, kernel_size=5, padding='same', activation='swish')(X)
  H = tf.keras.layers.BatchNormalization()(H)

  H = tf.keras.layers.Conv2D(64, kernel_size=5, padding='same', activation='swish')(H)
  H = tf.keras.layers.MaxPool2D()(H)

  H = tf.keras.layers.Conv2D(64, kernel_size=3, padding='same', activation='swish')(H)
  H = tf.keras.layers.MaxPool2D()(H)

  H = tf.keras.layers.Conv2D(64, kernel_size=3, padding='same', activation='swish')(H)
  H = tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2))(H)
  H = tf.keras.layers.Dropout(0.3)(H)

  H = tf.keras.layers.Flatten()(H)

  H = tf.keras.layers.Dense(128)(H)
  H = tf.keras.layers.BatchNormalization()(H)
  H = tf.keras.layers.Activation('swish')(H)

  H = tf.keras.layers.Dense(84)(H)
  H = tf.keras.layers.Activation('swish')(H)
  H = tf.keras.layers.Dropout(0.4)(H)

  Y = tf.keras.layers.Dense(10, activation='softmax')(H)
  model = tf.keras.models.Model(X, Y)
  model.summary()

  return model

model = build_model()

cross_val_score

from sklearn.model_selection import cross_val_score

scores = cross_val_score(model, x_train, y_train, cv=5)

Scores

import numpy as np
np.mean(scores)

print(scores)

'AI' 카테고리의 다른 글

GridSearchCV with Keras  (0) 2021.08.21
Data Augmentation  (0) 2021.08.21